Customize Consent Preferences

We use cookies to help you navigate efficiently and perform certain functions. You will find detailed information about all cookies under each consent category below.

The cookies that are categorized as "Necessary" are stored on your browser as they are essential for enabling the basic functionalities of the site. ... 

Always Active

Necessary cookies are required to enable the basic features of this site, such as providing secure log-in or adjusting your consent preferences. These cookies do not store any personally identifiable data.

No cookies to display.

Functional cookies help perform certain functionalities like sharing the content of the website on social media platforms, collecting feedback, and other third-party features.

No cookies to display.

Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics such as the number of visitors, bounce rate, traffic source, etc.

No cookies to display.

Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.

No cookies to display.

Advertisement cookies are used to provide visitors with customized advertisements based on the pages you visited previously and to analyze the effectiveness of the ad campaigns.

No cookies to display.

Proteotoxicity: an unappreciated mechanism of heart disease and its potential for novel therapeutics

European Coordinator:
  • Mathias GAUTEL, King's College, London (UK)
North American Coordinator:
  • Jeffrey ROBBINS, Cincinnati Children's Hospital (USA)
Members:
  • Lucie CARRIER, Hamburg University Medical Center (Germany)
  • Joseph HILL, University of Texas Southwestern Medical Center, Dallas (USA)
  • Marcus KRUGER, Max Planck Institute for Heart and Lung Research, Bad Nauheim (Germany)
  • Cam PATTERSON, New York-Presbyterian/Well Cornell Medical Center (USA)
  • Marco SANDRI, Venetian Institute of Molecular Medicine, Padova (Italy)
  • Monte WILLIS, University of North Carolina, Chapel Hill (USA)

Like skeletal muscle, cardiac muscle has the remarkable ability to adapt quickly to changes in workload and stimulation.  This adaptation is accomplished by changes in muscle cell contractility, electric behavior, metabolism, and growth.  More fundamentally, these changes result from alterations in gene expression, protein synthesis, and protein breakdown.  Indeed, maintaining an appropriate balance between protein formation and breakdown is important for the normal function and adaptation of cardiac muscle cells. Many inherited cardiac diseases are caused by mutations in cardiac muscle proteins, and many environmental stresses can lead to errors in protein formation.   In both cases, the abnormalities may adversely affect protein function and turnover.  It is now emerging that failure to break down or clear proteins can result in proteotoxicity, a potential factor leading to inherited and acquired cardiac muscle diseases.

The network aims to define how defects in the two major pathways of protein breakdown, (the autophagy-lysosomal pathway and the ubiquitin-proteasome system), can lead to the buildup in cardiac muscle cells of unneeded or misfolded proteins and, ultimately, heart failure.  Using mouse and rabbit models and human tissue samples, this network will determine the role of proteotoxicity in genetic and non-genetic forms of heart failure; dissect out the genetic and signaling networks that regulate the two protein breakdown pathways; and search for targeted therapies that reduce or block proteotoxicity in the hopes of developing new clinical treatments for heart failure.